Development of a Tissue Engineered Scaffold for Meniscus Replacement
نویسندگان
چکیده
It is well accepted that the loss of meniscal function due to surgical removal is a significant factor in the onset of degenerative osteoarthritis of the knee. Few viable alternatives exist for the replacement of significantly damaged tissue. In this study, two potential designs for meniscus scaffolds were compared with a focus on the mechanical protection they provide the articular surfaces and their overall biological incorporation into synovial tissue. Three scaffold designs (no fiber reinforcement, 500 fiber scaffold, and 1,000 fiber scaffold) were mechanically loaded in compression at a load of either 100 or 250N. Pressure sensitive film was employed to determine the pressure distribution profile on the tibial plateau after loading. Portions of scaffolds were also implanted into the synovium of the rabbit knee in a nonfunctional capacity for either 4 or 8 weeks. It was found that the presence of fiber reinforcement in the scaffold increased the contact area on the tibial plateau and decreased the high peak loads for the 100 N loading condition. No differences in biological incorporation were found between the two fiber reinforced scaffolds. Both scaffolds were infiltrated by cells by 4 weeks and tissue deposition was observed. Based on these results, the fiber reinforced meniscus scaffold design is a feasible design for the replacement of significantly damaged meniscal tissue. Further evaluation and optimization are currently underway.
منابع مشابه
An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus
Current surgical treatments for meniscal tears suffer from subsequent degeneration of knee joints, limited donor organs and inconsistent post-treatment results. Three clinical scaffolds (Menaflex CMI, Actifit® scaffold and NUsurface® Meniscus Implant) are available on the market, but additional data are needed to properly evaluate their safety and effectiveness. Thus, many scaffold-based resear...
متن کاملBiochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration
Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a p...
متن کاملLysophosphatidic Acid: A Novel Biochemical Agent for Tissue Engineering Fibrocartilage
The knee meniscus is a fibrocartilaginous tissue vital to orthopedic health but critically lacking in regenerative capacity. Over 450,000 meniscectomies are performed annually in the US, and such defects are left empty due to the lack of a suitable meniscus replacement. Meniscectomies, however, have been shown to lead to osteoarthritis. Meniscus tissue generated in vitro may greatly improve cur...
متن کاملA Review of Tissue‐Engineered Cartilage Utilizing Fibrin and Its Composite
Suitable alternatives are made for damaged or diseased organs and tissues in tissue engineering by combining cellular and molecular biology with materials and mechanical engineering. Fibrin is a critical blood component responsible for homeostasis, used extensively as a biopolymer scaffold in tissue engineering. This study summarizes the latest developments in organ and tissue regeneration usin...
متن کاملCritical seeding density improves the properties and translatability of self-assembling anatomically shaped knee menisci.
A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The obj...
متن کامل